Deformations of Gabor Frames
نویسنده
چکیده
The quantum mechanical harmonic oscillator Hamiltonian H = (t − ∂ t )/2 generates a one–parameter unitary group W (θ) = e in L(R) which rotates the time–frequency plane. In particular, W (π/2) is the Fourier transform. When W (θ) is applied to any frame of Gabor wavelets, the result is another such frame with identical frame bounds. Thus each Gabor frame gives rise to a one–parameter family of frames, which we call a deformation of the original. For example, beginning with the usual tight frame F of Gabor wavelets generated by a compactly supported window g(t) and parameterized by a regular lattice in the time–frequency plane, one obtains a family {Fθ : 0 ≤ θ < 2π} of frames generated by the non–compactly supported windows g θ = W (θ)g, parameterized by rotated versions of the original lattice. This gives a method for constructing tight frames of Gabor wavelets for which neither the window nor its Fourier transform have compact support. When θ = π/2, Fθ is the well–known Gabor frame generated by a window with compactly supported Fourier transform. The family {Fθ} therefore interpolates these two familiar examples. PACS numbers: 02.20.+b, 03.65.–w.
منابع مشابه
Image processing by alternate dual Gabor frames
We present an application of the dual Gabor frames to image processing. Our algorithm is based on finding some dual Gabor frame generators which reconstructs accurately the elements of the underlying Hilbert space. The advantages of these duals constructed by a polynomial of Gabor frame generators are compared with their canonical dual.
متن کاملDeformation of Gabor Systems
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theore...
متن کاملGabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations
In this work we study families of pairs of window functions and lattices which lead to Gabor frames which all possess the same frame bounds. To be more precise, for every generalized Gaussian g, we will construct an uncountable family of lattices [Formula: see text] such that each pairing of g with some [Formula: see text] yields a Gabor frame, and all pairings yield the same frame bounds. On t...
متن کاملAchievement of Minimum Seismic Damage for Zipper Braced Frames Based on Uniform Deformations Theory
When structures are subjected to strong ground motion excitations, structural elements may be prone to yielding, and consequently experience significant levels of inelastic behavior. The effects of inelastic behavior on the distribution of peak floor loads are not explicitly accounted for in current seismic code procedures. During recent years, many studies have been conducted to develop new de...
متن کاملOn transformations between Gabor frames and wavelet frames
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly supported splines with geometrically distributed knot sequences. There is also a reverse transform, whi...
متن کامل